Electron Paramagnetic Resonance Hyperfine Pattern of Gallium-69 and -71 in a New Titanium–Gallium Complex

By G. HENRICI-OLIVÉ and S. OLIVÉ

(Monsanto Research S.A., Eggbuhlstrasse 36, CH-8050 Zürich, Switzerland)

THE Ti^{III}-B and Ti^{III}-Al complexes (I) and (II) have been investigated. We have prepared a Ti^{III}-Ga complex and have studied its e.p.r. spectrum in toluene.

The spectrum is reasonably resolved at -20° and shows clearly the interaction of the unpaired electron of the Ti^{III} atom with the ⁶⁹Ga (I 3/2; μ 2.01) and the ⁷¹Ga (I 3/2; μ 2.55) nuclei, giving rise to two superimposed signals of four equivalent lines each (see Figure a and b). Lines are somewhat broadened at $+20^{\circ}$ (see Figure 1c), and also below -20° . The slight asymmetry of the spectrum is probably due to field-dependent linewidth effects which, however, could not be evaluated quantitatively at the present resolution. The complexes have a g-value of 1.974. The isotropic HFS-constants $[a(^{69}Ga) 91 \text{ MHz}]$, $a(^{11}\text{Ga})$ 116 MHz] are in satisfactory agreement with the magnetic moments as determined by n.m.r.:² the intensities of the two quadruplets are proportional to the natural abundances of the two isotopes (69Ga 60%, 71Ga 40%). On both sides of the main spectrum appear the weak ⁴⁷Ti-⁴⁹Ti satellites. Figure d represents the outer, well resolved, lines at increased signal level. Although the satellite hyperfine pattern must be very crowded in the central part, the position of the extreme high-field and lowfield lines allow an estimate of the isotropic coupling constant of the two magnetic Ti isotopes (47 Ti I 7/2, 49 Ti I 5/2). The two extreme lines belong to $m_I(^{49}\text{Ti}) = \pm 7/2$ and $m_I({}^{71}\text{Ge}) = \pm 3/2$. Thus their total distance ΔH of 575 MHz is composed of, $\Delta H = 7 \times a^{(49}\text{Ti}) + 3 \times a^{(71}\text{Ga})$.

¹G. Henrici-Olivé and S. Olivé, Angew. Chem., 1968, 80, 796. ²NMR Tables, Varian Associates. From this follows for the splitting constant, which is supposed to be the same for both titanium isotopes, $a({}^{47}\text{Ti}{-}{}^{49}\text{Ti}) \simeq 32 \text{ MHz}.$

FIGURE. E.p.r. signal of the complex $Cp_2TiCl_2GaCl_2^{III}$: (a) at -20° ; (b) block diagram for the ⁶⁹Ga and ⁷¹Ga hyperfine quadruplets; (c) at $+20^{\circ}$; (d) ⁴⁷Ti-⁴⁹Ti satellites at increased signal level.

The very similar g-value and Ti splitting-constant, as compared with those of complexes (I) and (II),¹ and the completely analogous preparation, suggest that the observed e.p.r. spectrum may be attributed to complex (III). The relatively high value of the unpaired spin-density at the Ga nuclei indicates that GaCl₃ is the strongest Lewis acid (electron acceptor) of the Group III trichlorides.

We thank Dr. G. R. Luckhurst, University of Southampton, for helpful criticism.

(Received, December 2nd, 1968; Com. 1640.)